
Software Design Document

Form Buster: Web-Based Registration,
Approval, and Tracking

Team Members

Daniel Acosta (dacosta2022@my.fit.edu)
Christopher Demuro (cdemuro2022@my.fit.edu)

Alex Merino (amerino2022@my.fit.edu)
Luka Miodrag Starcevic (lstarcevic2022@my.fit.edu)

Faculty Advisor
Phillip Bernhard (pbernhar@fit.edu)

Version 1.0
Feb 24, 2025

mailto:dacosta2022@my.fit.edu
mailto:cdemuro2022@my.fit.edu
mailto:amerino2022@my.fit.edu
mailto:lstarcevic2022@my.fit.edu
mailto:pbernhar@fit.edu

Table of Contents
1.​ Introduction

1.1.​ Purpose
1.2.​ Scope
1.3.​ Objective
1.4.​ Key Interactions

2.​ System Architecture
2.1.​ UML Class Diagram - Core User and Form Classes

3.​ User Interface Design
3.1.​ Landing Page/Non User Page
3.2.​ Home Page/Dashboard
3.3.​ User Login
3.4.​ Student User Registration
3.5.​ Inbox
3.6.​ Form Selection
3.7.​ Form Completion
3.8.​ Settings/Account
3.9.​ Edit Form Selection

3.10.​ Form Layout Editor
4.​ Database Design

4.1.​ Entity Relationship Diagram
4.2.​ User Collection
4.3.​ Active Form Collection
4.4.​ Form Layout Collection

1.​ Introduction
1.1.​ Purpose

The purpose of this project is to create a web-based application designed to host
the storing, completion, and distribution of registration forms at Florida Tech. This
document aims to describe the design of the Form Buster system.

1.2.​ Scope
The scope of the Form Buster project is to replace the current registration process
at Florida Tech. The idea is to create a registration portal similar to the Financial
Aid portal that is in place at Florida Tech, which houses all registration forms and
allows students, staff, and administrators to complete them.

1.3.​ Intended Audience​
The intended audience for the project is all students, staff advisors, and registrar
employees/administrators and Florida Institute of Technology. A majority of the
users will be the students so the project focuses on implementation specifically for
those users. Another main functionality of the system is to allow for the
administrators to modify forms, which is available to only administrators.

2.​ System Architecture
2.1.​ UML Class Diagram - Core User and Form Classes

Class Details:
●​ User: This is a parent class for the 3 main user types of the application. It stores shared

information such as the user’s ID, their password hash, and the role assigned to the
account. This class’s primary purpose is to contain the data necessary to login, and allow
its subclasses to specify additional information as needed per role.

●​ Student: This is a subclass of the User class. The purpose of this class is to hold
additional information relevant to students using the application, such as their student ID,
name, email, department, and major. The student can submit forms after filling out a form
template. The student’s relevant information that can be autofilled during form completion

is stored in the StudentAutoFillInfo attribute, so that it is concentrated into one object that
can be returned in its GetFormAutoFillInfo function as needed.

●​ Admin: This is a subclass of the User class. The purpose of this class is to hold additional
information relevant to administrators of the application, such as their name and email.
Admins do not need to autofill their information in any forms, so the name and email are
stored individually in the class as opposed to being stored in an AutoFillInfo subclass.
Admin users can manage users (update data, remove users, reset passwords, etc), approve
forms, create new forms, and edit existing forms.

●​ StaffAdvisor: This is a subclass of the User class. The purpose of this class is to hold
additional information relevant to staff advisors using the application, such as their
staffAdvisorID, name, email, and department. The staff advisor can approve forms, create
new forms, and edit existing forms. The staff advisor’s relevant information that can be
autofilled during form approval is stored in the StaffAutofill attribute, so that it is
concentrated into one object that can be returned in its GetFormAutoFillInfo function as
needed.

●​ Form: This is a class for completed forms that have been submitted by a user and are
awaiting approval. The form has a form ID to help identify it, and the following attributes
to describe the form’s contents: title, description, and fields (a list of all of the fields in the
form). The form stores the date of its creation as well as the creator of the form. The
progress of the form’s completion as well as the users that are connected to the form’
approval process are also stored.

●​ Form Template: This is a class for templates of forms that will be submitted by various
users. It contains the template’s ID, the title of the template, its description, as well as a list
of the fields that should be filled out when submitting an instance of the template.

●​ FormProgress: This class primarily serves as a data type to relate the statuses of form
approval signatures to the dates on which the signatures were signed. This data type is
vital to tracking the progress of the form through its approval process.

●​ FormField: This is a class for fields that will appear on forms. The field’s ID, label and
FieldType are stored in this class for when a form needs to be generated onto the user’s
screen. Additionally, the isRequired boolean is stored for flexibility in forms if some fields
are optional.

3.​ User Interface Design
3.1.​ Landing Page/Non-User Page​

Landing page for the web application, mainly for logged-out users.

3.2.​ Home Page/Dashboard​
Home page for signed-in users with hamburger menu open.

3.3.​ User Login​
A sample login page with email and password as inputs, and the grey boxes are
editable inputs​

3.4.​ Student User Registration​

A sample student registration page, which asks for multiple inputs​

​

3.5.​ Inbox​
A sample inbox page, similar to any email inbox, where users can view recent
notifications on their forms and comments on these forms.​

3.6.​ Form Selection​

A sample page that holds the list of forms that a user can start. The forms shown
are forms that will be added, but there will be more when implemented as well.

3.7.​ Form Completion​
The page for a Class Registration Form contains inputs for all the information that
a class registration form needs. The dark grey inputs denote that the inputs come
from the User’s account information and are auto-filled when the form is started. ​

3.8.​ Settings/Account​

A sample Settings/Account page that allows the user to view their account
information and settings they can modify.

3.9.​ Edit Form Selection​
A sample page for the Administrators that allows them to choose a form to edit.
Note that in the hamburger menu, Administrators have an extra tab for the form
editor since the Student and Staff Advisor users can not edit form layouts.

3.10.​ Form Layout Editor​
A sample GUI of what the Form Layout Editor may look like, where
Administrators can add, remove, or modify inputs into a form.

4.​ Database Design
4.1.​ Entity Relationship Diagram

4.2.​ User Collection

4.2.1.​ User
●​ UserID (Primary Key): A unique identifier
●​ Name: First and last name of the user
●​ Email: FIT email of the user
●​ Password: Password of the user
●​ Role: Role deciding the user’s level of access (student, staff advisor,

admin)
●​ Major: Major only stored for students
●​ Advisor: Advisor only stored for students

4.2.2.​ User Description

This collection stores all the data related to a user. The email and password
are used for logging in, the ID is used for distinguishing between users, the
name is used for auto-filling forms, and the role decides what the user can

access on the website. Students have extra data stored for their major and
advisor.

4.3.​ User Preferences Collection
4.3.1.​ User Preferences

●​ Email Notifications: Decides whether the user receives email notifications
on top of the inbox notifications

●​ UserID: References back to the user
4.3.2.​ User Preferences Description

This collection stores the user's preferences regarding the website.
Currently this only stores their preference regarding email notifications, but
more may be added in the future (dark mode, etc.).

4.4.​ Form Template Collection
4.4.1.​ Form Template

●​ Name: The unique name of the form (Used as identifier since the names are
unique)

●​ HTML Data: All the information on the form, including the text, its
formatting, the required fields and their names and attributes etc.

4.4.2.​ Form Template Description
The form template is the empty form that is to be parsed and displayed for
the user to see, fill out, and/or edit. Most of the data is stored as a JSON file
that will make parsing each part of the form convenient, as the HTML code
could be directly stored as objects and parsed back when called easily.

4.5.​ Form in Progress Collection
4.5.1.​ Form in Progress

●​ Instance ID: ID of this specific form, which will be prefaced with the ID of
the associated student

●​ Status: List of statuses for each party associated, which will be used to
display the overall status of the form

●​ Comment(s): Comments left by anyone who has approved or rejected the
form

●​ Connected Users: List of the users connected to the form
●​ Date of Creation: The date the form was created
●​ Dates of Signatures: The date of approval/rejection for progress tracking

4.5.2.​ Form in Progress Description
The forms in progress are the forms that have been submitted by a student
and are currently either waiting for approval, have been approved, or have
been rejected. These forms store the necessary status, user, date, and
comment information to allow the display of the status tracking. The ID is

used to identify each from, and it is dependent on the student ID of the
associated student.

