
Software Requirement Document

Form Buster: Web-Based Registration,
Approval, and Tracking

Team Members

Daniel Acosta (dacosta2022@my.fit.edu)
Christopher Demuro (cdemuro2022@my.fit.edu)

Alex Merino (amerino2022@my.fit.edu)
Luka Miodrag Starcevic (lstarcevic2022@my.fit.edu)

Faculty Advisor
Phillip Bernhard (pbernhar@fit.edu)

Version 1.0
Feb 24, 2025

​

mailto:dacosta2022@my.fit.edu
mailto:cdemuro2022@my.fit.edu
mailto:amerino2022@my.fit.edu
mailto:lstarcevic2022@my.fit.edu
mailto:pbernhar@fit.edu

Table of Contents
1.​ Introduction

1.1.​ Purpose
1.2.​ Scope
1.3.​ Definitions
1.4.​ References

2.​ General Description
2.1.​ Project Perspective
2.2.​ Product Functions
2.3.​ User Classes

2.3.1.​ Student
2.3.2.​ Staff Advisor
2.3.3.​ Administrator

2.4.​ Operating Environment
2.4.1.​ Portability

2.5.​ Design and Implementation Constraints
2.6.​ User Documentation

3.​ External Interface Requirements
3.1.​ Graphical User Interface (GUI)
3.2.​ System Interfaces
3.3.​ Hardware Interfaces
3.4.​ Software Interfaces

4.​ Functional Requirements
4.1.​ Form Completion
4.2.​ Form Tracking

4.2.1.​ Example
4.3.​ Form Layout Editor

4.3.1.​ Form Creation
4.3.2.​ Security
4.3.3.​ Example

4.4.​ User Registration and Login
4.4.1.​ Registration
4.4.2.​ Login
4.4.3.​ Form Autofill

4.5.​ Email Notification System
4.6.​ Dashboard
4.7.​ Inbox

5.​ Nonfunctional Requirements
5.1.​ Security Requirements
5.2.​ Performance Requirements

1.​ Introduction​

1.1.​ Purpose​

​
The purpose of this document is to outline the requirements for the features of
Form Buster, a web-based application designed to host the storing, completion,
and distribution of registration forms at Florida Tech. This document describes the
general overview of the project, features, functional requirements, and
non-functional requirements. ​

1.2.​ Scope​
​
The scope of the Form Buster project is to replace the current registration process
at Florida Tech. The idea is to create a registration portal similar to the Financial
Aid portal that is in place at Florida Tech, which houses all registration forms and
allows students, staff, and administrators to complete them. ​

1.3.​ Definitions​
​
- GUI: Graphical User Interface​
- MERN stack: Full stack web development tools/languages (MongoDB, Express,
React, and NodeJS) ​

1.4.​ References​
​
This document follows the “IEEE Recommended Practice for Software
Requirements Specifications.”

2.​ General Description​

2.1.​ Project Perspective​

​
Form Buster is a web application that simplifies and streamlines the registration
process at Florida Tech. The system will allow users of all types to fill out,
approve, and track a multitude of registration forms that Florida Tech utilizes. The
system is also completely located in one centralized web application to ensure
ease of access for all users.​

2.2.​ Product Functions​
​
Form Buster, in true web application fashion, has multiple functions. The main
goal, as described above, is to simplify the registration process through these
functions:​

1. Form Completion: Users utilizing HTML Forms, can fill out registration forms
online.​
2. Form Tracking: Users can track the progress of a form after completing said
form.​
3. Form Layout Editing: Administrators can modify forms in the form database.​
4. User Registration and Login: Users can register/log in to save their data and
active forms.​
5. Email Notification System: Users can enable/disable email notifications for
when their forms are updated. ​
6. Dashboard: The users can view their dashboard, which has a centralized and
concise list of active forms for the specific user.​
7. Inbox. The users can view updates and notifications through their inbox in the
Form Buster application ​

2.3.​ User Classes​
​
There are three user classes in the Form Buster system. The purpose of Form
Buster is to simplify the registration process, which is mainly for students;
however, all users, when it comes to registering, will be greatly and positively
affected by the changes. All user types will log in using the same login module
and be shown slightly differing dashboards based on their user type.​

2.3.1.​ Student​
​
The student user class will make up most of the user pool since there are
about 10-15 students per advising staff advisor. The students will be able
to start any available registration forms and track those same forms. They
will also have access to a personal dashboard and inbox as well.​

2.3.2.​ Staff Advisor​
​
Staff advisor users will have the same functions as students, where they
can start forms and track those same forms. Staff advisors also have the
ability to deny any form that is sent their way. The staff advisors help with
advising for a list of students, they can deny a class registration form for a
specific reason and send it back to the student for them to update.​

2.3.3.​ Administrator​
​
Administrators can use the same functions as students and staff advisors
alike. The main difference for administrators is that they will have access
to the Form Layout Editor. Most administrator users will be employees at
the registrar, where they have the final say on the registration status for
students.

2.4.​ Operating Environment​
​
The web application will be created through the MERN stack and hosted on
Amazon Web Services (AWS) to ensure the website is public and accessible. ​

2.4.1.​ Portability​
​
For a web application to be fully portable, it must be able to work on all
different browsers. The main browsers we will focus on ensuring
compatibility/portability are Google Chrome, Opera, Safari, Firefox, and
Microsoft Edge. We will work to ensure that the web app is
mobile-responsive and functions properly on devices of all sizes and form
factors. ​

2.5.​ Design and Implementation Constraints​
​
Due to a lack of funding, the project will be run on a free server through AWS
which has a limited number of requests per month, along with other limitations. ​

2.6.​ User Documentation​
​
A user guide and documentation on how to use each module will be provided
when the project is completed. ​

3.​ External Interfaces​

3.1.​ Graphical User Interface (GUI)​

​
The graphical user interface (GUI) is where the system displays the information it
contains in a way that is pleasing to the users. It is the primary user interface for
the application. It initially presents the user with a Dashboard that provides a
summary of available information to the user on what forms they have that are
still in progress or that they need to approve. It also provides access to the Inbox
so that the user can check their notifications and the configuration menu. The
Dashboard for Administrator users will also grant access to the form editor and
template manager. ​

3.2.​ System Interfaces​
Our database will interface with the web application to pull form layouts, active
form data, and user information. This is our main interface to another system and
the most important one to keep secure. The database will keep the user data,
which will be encrypted, and send the data to the Form Buster system depending
on the needs of each user. ​

3.3.​ Hardware Interfaces​

Both the web app and the backend databases require server hardware to run on.
The web app must be able to run in any modern web browser for any modern
device, be it a desktop PC, laptop, or smartphone.​

3.4.​ Software Interfaces​

The GUI will be presented in a web app that can run in a modern web browser.
The web application will also interface with AWS and the EC2 server on which it
will run. ​

4.​ Functional Requirements​

4.1.​ Form Completion​

​
The system shall allow all user types (student, staff, administration) to begin a
new form and fill out the information on the form. All forms will be displayed as
HTML form objects, with the initial inputs to the application being the form that
was selected by the user. The system will then access the form database, pull the
form fields required, and display them on the GUI. The user then fills out the
form with the necessary information ​

4.2.​ Form Tracking​
​
The system shall allow a user to track a form that requires their input. When a
form becomes active, a list of users will be created and attached to our form data
structure. This list of users will be able to view the form throughout its lifecycle
and check its progress. ​

4.2.1.​ Example​
​
When a student fills out a class registration form, they will automatically
have the form added to their tracked forms list. Since it is a class
registration form, the student’s advisor and the Dean of the College that
the student is a part of also get the form added to their tracked forms list
since their input is needed for the form to complete its life cycle.

4.3.​ Form Layout Editing​

​
The system shall allow the Administrator users to create, modify, publish,
unpublish, and delete forms. Due to the ever-changing registration environment,
our system needs to allow the modification of forms.​

4.3.1.​ Form Creation​
​
The system shall allow the administrators to create a new school form.
When creating a new form, they can pick from any form template in the
database or start with a blank form. ​

4.3.2.​ Security​
​
The system shall only allow users under the type Administrator to use the
Layout Editor. ​

4.3.3.​ Example​
​
Say the Administrators feel that the student’s school identification number
is no longer necessary when registering for classes. An administrator shall
login and navigate to the list of all forms in the database, pick the class
registration form, and click the edit button. The administrator will now
view an editable view of the HTML form and can click delete on the
student identification number input. The administrator can then save the
updated form, which will create a new form layout in the database for later
review. Once all checks are made, the administrator can publish the new
form in place of the old class registration form. Alternatively, they can
immediately publish the change to all users, which will allow the new
form layout to replace the existing layout in the database.​

4.4.​ User Registration and Login​
​
The system shall allow new users to register for an account and allow registered
users to log into the system with their unique credentials. ​

4.4.1.​ Registration​
​
The system shall allow new users to register when first using the site. The
users will be asked to pick their user type (student, staff advisor,
administrator) and then create a password along with their email address.
During registration, the users will also be asked to fill in important
information such as name, major, student identification number, and
advisor. This information can be used to autofill form inputs to simplify
the form completion process.​

4.4.2.​ Login​
​
The system shall allow a user who has already created an account to
navigate to the login module where they can input their email and
password to log in.​

4.4.3.​ Form Autofill​
​
The system shall autofill certain form inputs based on the user information
connected to a user’s account. This information, which is given by the user
during the registration process, can be modified by the user at any time on
their profile page.​

4.5.​ Email Notification System​
​
When enabled, the system shall send email notifications to users when a form has
received a signature, been denied by an interested party, been completed, or when
any other changes have occurred in the completion status of said form.
Notifications shall inform the user of the status change and what action (if any)
should be taken to further complete the aforementioned form. The email
notification system shall be optional and may be completely disabled at the
discretion of the user. This information which is sent through email, is a replica of
the Inbox module described below.​

4.6.​ Dashboard
​
The system shall have a centralized dashboard, where a user, upon logging in, will
be able to see a summarized list of all the forms that currently need their attention,
along with the status of their completion. This list shall be categorized by whether
the current user initiated the form or whether they are a receiving party. The
dashboard shall also allow the user to initiate a new form or manage the list of
form templates should their permissions allow. The dashboard shall allow the user
to access, whether directly or indirectly, all other functionality available in the
app.​

4.7.​ Inbox​
​
The system shall list all the user’s notifications through an inbox module. These
notifications shall be identical to the notifications distributed by the Email
Notification System, but the Inbox shall not be disabled by the user. The Inbox
shall notify the user when a form has received a signature, been denied by an
interested party, been completed, or when any other changes have occurred in the
completion status of said form. Notifications shall inform the user of the status
change and what action (if any) should be taken to further complete said form.​

5.​ Nonfunctional Requirements​

5.1.​ Security Requirements​

​
There are many security requirements that must be taken into account. The main
concern is that users who do not have an account are able to access user data, or
that users are able to access other user data that they should not be able to access.
The first problem will be solved by creating a landing page for all users that are
not currently logged into an account where they can view the details about the
system, but not directly access the system. The second problem can be solved by
ensuring that the user data is encrypted and not accessible for any users, through
an API endpoint for example. Students and staff advisors will have access to the
name and email of all user accounts for correspondence about forms or other
important information. ​
​
Users must also be only allowed to complete tasks that their user types are able to
complete. The users are in a hierarchical structure of available functions, where
administrators can use all functions, staff advisors can use most functions, and
students can only use a select few functions. It needs to be ensured that students
and staff advisors cannot be allowed access to the form layout editor.​
​
Another security concern is that a student signs up under the student user type and
not the staff advisor or administrator user type. This will be tackled by adding a
checkpoint when creating a staff advisor or administrator account. Any
administrator can look at the list of staff advisors and administrators who have
requested to register and can accept or decline the account based on whether the
user is actually a staff advisor or an administrator and not a student or other user
trying to hack into the system. This would require there to be a main administrator
that will be added to the system to release to allow for other administrators to be
added. ​

5.2.​ Performance Requirements​
​
The system must perform under all test cases, including edge cases, and be
completely reliable, following these requirements as well:​
​
​ - The system shall process and send forms in under 5 seconds​
​ - The system shall process forms and updates with 100% reliability and
accuracy​
​ - The system shall register users in under 5 seconds​
​ - The system shall register users with 100% reliability and accuracy​
These performance requirements are similar to the requirements of corporate
projects where reliability is of the utmost importance.

